首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18703篇
  免费   714篇
  国内免费   594篇
  2023年   131篇
  2022年   150篇
  2021年   246篇
  2020年   263篇
  2019年   411篇
  2018年   455篇
  2017年   291篇
  2016年   331篇
  2015年   455篇
  2014年   1000篇
  2013年   1260篇
  2012年   656篇
  2011年   935篇
  2010年   732篇
  2009年   967篇
  2008年   1014篇
  2007年   1065篇
  2006年   895篇
  2005年   896篇
  2004年   795篇
  2003年   701篇
  2002年   623篇
  2001年   402篇
  2000年   373篇
  1999年   421篇
  1998年   416篇
  1997年   328篇
  1996年   261篇
  1995年   331篇
  1994年   307篇
  1993年   265篇
  1992年   231篇
  1991年   203篇
  1990年   171篇
  1989年   170篇
  1988年   171篇
  1987年   165篇
  1986年   118篇
  1985年   147篇
  1984年   227篇
  1983年   160篇
  1982年   183篇
  1981年   141篇
  1980年   139篇
  1979年   115篇
  1978年   58篇
  1977年   59篇
  1976年   46篇
  1975年   38篇
  1973年   33篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
991.
992.
Human MICAL1 is a member of a recently discovered family of multidomain proteins that couple a FAD‐containing monooxygenase‐like domain to typical protein interaction domains. Growing evidence implicates the NADPH oxidase reaction catalyzed by the flavoprotein domain in generation of hydrogen peroxide as a second messenger in an increasing number of cell types and as a specific modulator of actin filaments stability. Several proteins of the Rab families of small GTPases are emerging as regulators of MICAL activity by binding to its C‐terminal helical domain presumably shifting the equilibrium from the free – auto‐inhibited – conformation to the active one. We here extend the characterization of the MICAL1–Rab8 interaction and show that indeed Rab8, in the active GTP‐bound state, stabilizes the active MICAL1 conformation causing a specific four‐fold increase of kcat of the NADPH oxidase reaction. Kinetic data and small‐angle X‐ray scattering (SAXS) measurements support the formation of a 1:1 complex between full‐length MICAL1 and Rab8 with an apparent dissociation constant of approximately 8 μM. This finding supports the hypothesis that Rab8 is a physiological regulator of MICAL1 activity and shows how the protein region preceding the C‐terminal Rab‐binding domain may mask one of the Rab‐binding sites detected with the isolated C‐terminal fragment. SAXS‐based modeling allowed us to propose the first model of the free full‐length MICAL1, which is consistent with an auto‐inhibited conformation in which the C‐terminal region prevents catalysis by interfering with the conformational changes that are predicted to occur during the catalytic cycle.  相似文献   
993.
Lipid composition and macromolecular crowding are key external effectors of protein activity and stability whose role varies between different proteins. Therefore, it is imperative to study their effects on individual protein function. CYP2J2 is a membrane‐bound cytochrome P450 in the heart involved in the metabolism of fatty acids and xenobiotics. In order to facilitate this metabolism, cytochrome P450 reductase (CPR), transfers electrons to CYP2J2 from NADPH. Herein, we use nanodiscs to show that lipid composition of the membrane bilayer affects substrate metabolism of the CYP2J2‐CPR nanodisc (ND) system. Differential effects on both NADPH oxidation and substrate metabolism by CYP2J2‐CPR are dependent on the lipid composition. For instance, sphingomyelin containing nanodiscs produced more secondary substrate metabolites than discs of other lipid compositions, implying a possible conformational change leading to processive metabolism. Furthermore, we demonstrate that macromolecular crowding plays a role in the lipid‐solubilized CYP2J2‐CPR system by increasing the Km and decreasing the Vmax, and effect that is size‐dependent. Crowding also affects the CYP2J2‐CPR‐ND system by decreasing both the Km and Vmax for Dextran‐based macromolecular crowding agents, implying an increase in substrate affinity but a lack of metabolism. Finally, protein denaturation studies show that crowding agents destabilize CYP2J2, while the multidomain protein CPR is stabilized. Overall, these studies are the first report on the role of the surrounding lipid environment and macromolecular crowding in modulating enzymatic function of CYP2J2‐CPR membrane protein system.  相似文献   
994.
Previously we have reported on a series of pyridine-3-carboxamide inhibitors of DNA gyrase and DNA topoisomerase IV that were designed using a computational de novo design approach and which showed promising antibacterial properties. Herein we describe the synthesis of additional examples from this series aimed specifically at DNA gyrase, along with crystal structures confirming the predicted mode of binding and in vitro ADME data which describe the drug-likeness of these compounds.  相似文献   
995.
This is the first X-ray crystal structure of the monomeric form of sulfite reductase (SiR) flavoprotein (SiRFP-60) that shows the relationship between its major domains in an extended position not seen before in any homologous diflavin reductases. Small angle neutron scattering confirms this novel domain orientation also occurs in solution. Activity measurements of SiR and SiRFP variants allow us to propose a novel mechanism for electron transfer from the SiRFP reductase subunit to its oxidase metalloenzyme partner that, together, make up the SiR holoenzyme. Specifically, we propose that SiR performs its 6-electron reduction via intramolecular or intermolecular electron transfer. Our model explains both the significance of the stoichiometric mismatch between reductase and oxidase subunits in the holoenzyme and how SiR can handle such a large volume electron reduction reaction that is at the heart of the sulfur bio-geo cycle.  相似文献   
996.
Adding chipped wood to soil ameliorates compaction, allowing faster plant growth that is critical to successful wetland restorations. Following the filling and planting of an erosion gully in Halstead Meadow, Sequoia National Park, the tallest leaf height and maximum clone width of transplanted Scirpus microcarpus seedlings were negatively correlated with soil compaction. Plant height decreased by 9.8 cm and width decreased by 11.9 cm per MPa of soil compaction (range of 0.74–4.50 MPa). We experimentally amended mineral soil in a test trench and found that every 0.10 cm3/cm3 addition of wood chips (range of 0.00–0.75 cm3/cm3) reduced compaction by 0.174 MPa. Had the Halstead Meadow gully fill contained an equivalent volume of wood chips to the reference area soil organic matter content (0.64 cm3/cm3), we predict compaction would have been reduced by 1.11 MPa, increasing individual transplant width spread by 36%, approximately doubling the vegetated area after two growing seasons. In a greenhouse phytometer experiment, conifer bark leachate (phenolics 211 mg/L) significantly reduced plant growth and, in the presence of added nutrients, increased the production of the enzyme polyphenol oxidase (PPO). However, phenolics concentration in bark‐free conifer wood leachate (12 mg/L), similar to field‐sampled concentrations, did not affect plant growth or PPO production. Pure conifer bark is not recommended as a soil amendment, but the addition of low‐bark‐content wood chips to gully fill may be a feasible and effective means of reducing soil compaction, accelerating plant establishment, and lowering wetland restoration project costs.  相似文献   
997.
Advanced glycation end-products (AGEs) trigger multiple metabolic disorders in the vessel wall that may in turn lead to endothelial dysfunction. The molecular mechanisms by which AGEs generate these effects are not completely understood. Oxidative stress plays a key role in the development of deleterious effects that occur in endothelium during diabetes. Our main objectives were to further understand how AGEs contribute to reactive oxygen species (ROS) overproduction in endothelial cells and to evaluate the protective effect of an antioxidant plant extract. The human endothelial cell line EA.hy926 was treated with native or modified bovine serum albumin (respectively BSA and BSA-AGEs). To monitor free radicals formation, we used H2DCF-DA, dihydroethidium (DHE), DAF-FM-DA and MitoSOX Red dyes. To investigate potential sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial inhibitors were used. The regulation of different types of ROS by the polyphenol-rich extract from the medicinal plant Doratoxylon apetalum was also studied for a therapeutic perspective. BSA-AGEs exhibited not only less antioxidant properties than BSA, but also pro-oxidant effects. The degree of albumin glycoxidation directly influenced oxidative stress through a possible communication between NADPH oxidase and mitochondria. D. apetalum significantly decreased intracellular hydrogen peroxide and superoxide anions mainly detected by H2DCF-DA and DHE respectively. Our results suggest that BSA-AGEs promote a marked oxidative stress mediated at least by NADPH oxidase and mitochondria. D. apetalum plant extract appeared to be an effective antioxidant compound to protect endothelial cells.  相似文献   
998.
Recent report from this lab has shown role of Rac2 in the translocation of inducible nitric oxide synthase (iNOS) to the phagosomal compartment of polymorphonuclear leukocytes (PMNs) following phagocytosis of beads. This study was undertaken to further assess the status and role of tetrahydrobiopterin (BH4), a redox-sensitive cofactor, L-arginine, and the substrate of nitric oxide synthase (NOS) in sustained nitric oxide (˙NO) production in killing of phagocytosed microbes (Escherichia coli) by human PMNs. Time-dependent study revealed consistent NO and reactive oxygen species (ROS) production in the PMNs following phagocytosis of beads. In addition, levels of L-arginine and BH4 were maintained or increased simultaneously to support the enzymatic activity of NOS in the bead activated PMNs. Moreover, translocation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) subunits along with iNOS was reconfirmed in the isolated phagosomes. We demonstrate that increase in the level of NO was supported by L-arginine and BH4 to kill E. coli, by using PMNs from NOS2?/? mice, human PMNs treated with biopterin inhibitor, N-acetyl serotonin (NAS), or by suspending human PMNs in L-arginine deficient medium. Altogether, this study demonstrates that following phagocytosis, sustained. NO production in the PMNs was well-maintained by redox sensitive cofactor, BH4 and substrate, and L-arginine to enable microbial killing. Further results suggest NO production in the human PMNs, along with ROS and myeloperoxidase (MPO) is important to execute antimicrobial activity.  相似文献   
999.
1000.
During infection, plant pathogens secrete effector proteins to facilitate colonization. In comparison with our knowledge of bacterial effectors, the current understanding of how fungal effectors function is limited. In this study, we show that the effector AvrL567-A from the flax rust fungus Melampsora lini interacts with a flax cytosolic cytokinin oxidase, LuCKX1.1, using both yeast two-hybrid and in planta bimolecular fluorescence assays. Purified LuCKX1.1 protein shows catalytic activity against both N6-(Δ2-isopentenyl)-adenine (2iP) and trans-zeatin (tZ) substrates. Incubation of LuCKX1.1 with AvrL567-A results in increased catalytic activity against both substrates. The crystal structure of LuCKX1.1 and docking studies with AvrL567-A indicate that the AvrL567 binding site involves a flexible surface-exposed region that surrounds the cytokinin substrate access site, which may explain its effect in modulating LuCKX1.1 activity. Expression of AvrL567-A in transgenic flax plants gave rise to an epinastic leaf phenotype consistent with hormonal effects, although no difference in overall cytokinin levels was observed. We propose that, during infection, plant pathogens may differentially modify the levels of extracellular and intracellular cytokinins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号